A Coupled Lattice Boltzmann Method and Discrete Element Method for Discrete Particle Simulations of Particulate Flows
نویسندگان
چکیده
Discrete particle simulations are widely used to study large–scale particulate flows in complex geometries where particle–particle and particle–fluid interactions require an adequate representation but the computational cost has to be kept low. In this work, we present a novel coupling approach for such simulations. A lattice Boltzmann formulation of the generalized Navier–Stokes equations is used to describe the fluid motion. This promises efficient simulations suitable for high performance computing and, since volume displacement effects by the solid phase are considered, our approach is also applicable to non–dilute particulate systems. The discrete element method is combined with an explicit evaluation of interparticle lubrication forces to simulate the motion of individual submerged particles. Drag, pressure and added mass forces determine the momentum transfer by fluid–particle interactions. A stable coupling algorithm is presented and discussed in detail. We demonstrate the validity of our approach for dilute as well as dense systems by predicting the settling velocity of spheres over a broad range of solid volume fractions in good agreement with semi–empirical correlations. Additionally, the accuracy of particle–wall interactions in a viscous fluid is thoroughly tested and established. Our approach can thus be readily used for various particulate systems and can be extended straightforward to e.g. non–spherical particles.
منابع مشابه
A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure
This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...
متن کاملDispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملMultiphase Debris Flow Simulations with the Discrete Element Method Coupled with a Lattice-boltzmann Fluid
Debris flows are dangerous natural hazards that occur mainly in mountainous terrains after heavy rainfall, responsible for casualties and damages reported yearly worldwide. Their heterogeneous composition, with a viscoplastic fluid and the presence of a relevant granular solid phase, leads to a non-trivial behaviour making them a challenging problem both for the physical description of the phen...
متن کاملBack-calculation of mechanical parameters of shell and balls materials from discrete element method simulations
Discrete Element Method (DEM) is extensively used for mathematical modeling and simulating the behavior of discrete discs and discrete spheres in two and three dimensional space, respectively. Prediction of particles flow regime, power draw and kinetic energy for a laboratory or an industrial mill is possible by DEM simulation. In this article, a new approach was used to assess the main paramet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.00336 شماره
صفحات -
تاریخ انتشار 2017